If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-142=0
a = 1; b = 1; c = -142;
Δ = b2-4ac
Δ = 12-4·1·(-142)
Δ = 569
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{569}}{2*1}=\frac{-1-\sqrt{569}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{569}}{2*1}=\frac{-1+\sqrt{569}}{2} $
| 0.5x-6.8=3.2 | | 93(x−4)=9 | | 5c−9=16 | | 10x=2x+1-8x | | 9m√4m=8 | | 0.5x-6.8=-3.2 | | 3x/4.4=13.2 | | 6(-3x+5)=-24 | | 1/2+7k/10=13/20 | | 5x–8–4x=17 | | 5(2x-6)+120=10 | | 9mm=4 | | 12345678x=0 | | -(x-3)=-2(x-1) | | 1234x-345=123x+789 | | (8x-4)+120=180 | | 5b+8b=12 | | 2×+5y=8 | | x=7x-60 | | (x+96)+90=180 | | -9x+44=7x-52 | | 457890x=54x | | -8x+79=x-11 | | 180=25+2x+3x+5 | | 6x-24=3x+4 | | (8x+40)+60=180 | | 8x-23=7x-19 | | 9x+68=-9x-58 | | 7(-2+1)-2(4n-3)=-1 | | 2(p-3)-3(p-2)=6 | | 24-6x=3x+4 | | -x+1=-7x+55 |